Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Am Dent Assoc ; 152(7): 514-525.e8, 2021 07.
Article in English | MEDLINE | ID: covidwho-1212980

ABSTRACT

BACKGROUND: The dental office potentially possesses all transmission risk factors for severe acute respiratory syndrome coronavirus 2. Anticipating the future widespread use of COVID-19 testing in dental offices, the authors wrote this article as a proactive effort to provide dental health care providers with current and necessary information surrounding the topic. METHODS: The authors consulted all relevant and current guidelines from the Centers for Disease Control and Prevention and the US Food and Drug Administration, as well as online resources and review articles. RESULTS: Routine COVID-19 screening and triage protocols are unable to detect all infected people. With the advancements in diagnostic tools and techniques, COVID-19 testing at home or in the dental office may provide dentists with the ability to evaluate the disease status of their patients. At-home or point-of-care (POC) tests, providing results within minutes of being administered, would allow for appropriate measures and rapid decisions about dental patients' care process. In this review, the authors provide information about available laboratory and POC COVID-19 screening methods and identify and elaborate on the options available for use by dentists as well as the regulatory requirements of test administration. CONCLUSIONS: Dentists need to be familiar with COVID-19 POC testing options. In addition to contributing to public health, such tests may deliver rapid, accurate, and actionable results to clinical and infection control teams to enhance the safe patient flow in dental practices. PRACTICAL IMPLICATIONS: Oral health care must continue to offer safety in this or any future pandemics. Testing for severe acute respiratory syndrome coronavirus 2 at the POC offers a control mechanism contributing to and enhancing the real and perceived safety of care in the dental office setting.


Subject(s)
COVID-19 Testing , COVID-19 , Dental Offices , Humans , Laboratories , Point-of-Care Systems , SARS-CoV-2
2.
Phys Fluids (1994) ; 33(3): 033328, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1172589

ABSTRACT

COVID-19, caused by the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) virus, has been rapidly spreading worldwide since December 2019, causing a public health crisis. Recent studies showed SARS-CoV-2's ability to infect humans via airborne routes. These motivated the study of aerosol and airborne droplet transmission in a variety of settings. This study performs a large-scale numerical simulation of a real-world dentistry clinic that contains aerosol-generating procedures. The simulation tracks the dispersion of evaporating droplets emitted during ultrasonic dental scaling procedures. The simulation considers 25 patient treatment cubicles in an open plan dentistry clinic. The droplets are modeled as having a volatile (evaporating) and nonvolatile fraction composed of virions, saliva, and impurities from the irrigant water supply. The simulated clinic's boundary and flow conditions are validated against experimental measurements of the real clinic. The results evaluate the behavior of large droplets and aerosols. We investigate droplet residence time and travel distance for different droplet diameters, surface contamination due to droplet settling and deposition, airborne aerosol mass concentration, and the quantity of droplets that escape through ventilation. The simulation results raise concerns due to the aerosols' long residence times (averaging up to 7.31 min) and travel distances (averaging up to 24.45 m) that exceed social distancing guidelines. Finally, the results show that contamination extends beyond the immediate patient treatment areas, requiring additional surface disinfection in the clinic. The results presented in this research may be used to establish safer dental clinic operating procedures, especially if paired with future supplementary material concerning the aerosol viral load generated by ultrasonic scaling and the viral load thresholds required to infect humans.

3.
J Clin Med ; 10(6)2021 Mar 10.
Article in English | MEDLINE | ID: covidwho-1125241

ABSTRACT

Knowledge about the detection potential and detection rates of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in various body fluids and sites is important for dentists since they, directly or indirectly, deal with many of these fluids/sites in their daily practices. In this study, we attempt to review the latest evidence and meta-analysis studies regarding the detection rate of SARS-CoV-2 in different body specimens and sites as well as the characteristics of these sample. The presence/detection of SARS-CoV-2 viral biomolecules (nucleic acid, antigens, antibody) in different clinical specimens depends greatly on the specimen type and timing of collection. These specimens/sites include nasopharynx, oropharynx, nose, saliva, sputum, bronchoalveolar lavage, stool, urine, ocular fluid, serum, plasma and whole blood. The relative detection rate of SARS-CoV-2 viral biomolecules in each of these specimens/sites is reviewed in detail within the text. The infectious potential of these specimens depends mainly on the time of specimen collection and the presence of live replicating viral particles.

4.
Phys Fluids (1994) ; 32(8): 083111, 2020 Aug 01.
Article in English | MEDLINE | ID: covidwho-752385

ABSTRACT

The aerosol transmissibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has impacted the delivery of health care and essentially stopped the provision of medical and dental therapies. Dentistry uses rotary, ultrasonic, and laser-based instruments that produce water-based aerosols in the daily, routine treatment of patients. Abundant aerosols are generated, which reach health care workers and other patients. Viruses, including SARS-CoV-2 virus and related coronavirus disease (COVID-19) pandemic, continued expansion throughout the USA and the world. The virus is spread by both droplet (visible drops) and aerosol (practically invisible drops) transmission. The generation of aerosols in dentistry-an unavoidable part of most dental treatments-creates a high-risk situation. The US Centers for Disease Control and The Occupational Safety and Health Administration consider dental procedures to be of "highest risk" in the potential spreading of SARS-CoV-2 and other respiratory viruses. There are several ways to reduce or eliminate the virus: (i) cease or postpone dentistry (public and personal health risk), (ii) screen patients immediately prior to dental treatment (by appropriate testing, if any), (iii) block/remove the virus containing aerosol by engineering controls together with stringent personal protective equipment use. The present work takes a novel, fourth approach. By altering the physical response of water to the rotary or ultrasonic forces that are used in dentistry, the generation of aerosol particles and the distance any aerosol may spread beyond the point of generation can be markedly suppressed or completely eliminated in comparison to water for both the ultrasonic scaler and dental handpiece.

SELECTION OF CITATIONS
SEARCH DETAIL